Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser-induced Fluorescence and Incandescence Techniques

2002-10-21
2002-01-2669
In order to investigate the soot formation process in a diesel spray flame, simultaneous imaging of soot precursor and soot particles in a transient spray flame achieved in a rapid compression machine was conducted by laser-induced fluorescence (LIF) and by laser-induced incandescence (LII) techniques. The 3rd harmonic (355nm) and the fundamental (1064nm) laser pulses from an Nd:YAG laser, between which a delay of 44ns was imposed by 13.3m of optical path difference, were used to excite LIF from soot precursor and LII from soot particles in the spray flame. The LIF and the LII were separately imaged by two image-intensified CCD cameras with identical detection wavelength of 400nm and bandwidth of 80nm. The LIF from soot precursor was mainly located in the central region of the spray flame between 40 and 55mm (270 to 370 times nozzle orifice diameter d0) from the nozzle orifice. The LII from soot particles was observed to surround the soot precursor LIF region and to extend downstream.
Technical Paper

Optimum Engine Mounting Layout by Genetic Algorithm

2001-11-12
2001-01-2810
In this study, the genetic algorithm so called GA is newly applied for the optimization of many engine mounting parameters, calculations of stiffness matrix and inverse matrix to obtain 6 degrees of freedoms displacements at mounting points and a center of gravity. As a result, the optimized result could be shortly obtained in a minute, and an inexperienced engineer could easily make the optimum engine mounting layout, which can satisfy the vibration isolation and the non-interference in an engine compartment.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

High Temperature Gasification of Solid Fuels

1999-08-02
1999-01-2649
A new energy extraction and utilization system for low grade solid fuels such as coal and wastes is proposed, where solid fuels are gasified with high temperature air. The syngas is first cooled in a waste heat recovery boiler to extract its sensible thermal energy followed by conventional low temperature gas cleaning. A part of this cleaned-up syngas is used for high temperature air preheating while the rest is used for various energy utilization and conversion systems such as industrial furnaces, boilers and gas turbines. Experimental demonstration results for two main components, i.e. a gasifier and a high temperature air preheater are reported.
Technical Paper

A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines

1997-10-01
972959
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
Technical Paper

Heat Transfer From Impinging Diesel Flames to the Combustion Chamber Wall

1997-02-24
970896
The local heat fluxes from impinging combusting and evaporating diesel sprays to the wall of a square combustion chamber were measured in a rapid compression machine. It was revealed that the ratio of local heat flux between the combusting and evaporating spray, q̇c/q̇e, is of the same order of magnitude as (Tc-Tw)/(Te-Tw) and its values estimated by a two-zone model agree roughly with the measured ones. The time-mean local heat flux during the spray impingement was found to be approximately proportional to the 0.8th power of the injection velocity and the heat-transfer phenomenon depends largely on whether the ignition starts before or after the impingement.
Technical Paper

Heat Engine with Reciprocating Super-Adiabatic Combustion in Porous Media

1997-02-24
970201
A one-dimensional numerical calculation has been performed on a new reciprocating heat engine proposed on the basis of super-adiabatic combustion in porous media. The system consists of two pistons and a thin porous medium in a cylinder; one being a displacer piston and the other a power piston. These create reciprocating motions with a phase relation angle. By means of the reciprocating flow system, the residual combustion gas enthalpy is effectively regenerated to induce enthalpy increase in the mixture through the porous medium. Due to heat recirculation, the thermal efficiency reaches to 58% under the condition of the compression ratio of 2.3.
Technical Paper

Combustion Enhancement of Very Lean Premixture Part in Stratified Charge Conditions

1996-10-01
962087
Local inhomogeneity of mixture concentration affects combustion characteristics in the lean burn system and also in the stratified charge combustion system. To investigate such combustion systems, the effects of inhomogeneous mixtures were examined using a carefully controlled experimental system. In this study, a constant-volume chamber, which can simulate an idealized stratified charge by using a removable partition inside the chamber, was developed. Flow and combustion characteristics were examined by indicated pressure analysis, Schlieren photography, ion probe measurements and local equivalence ratios measurements while varying the combination of initial equivalence ratios on each side of the partition. As a result, combustion characteristics of charge stratified, very lean propane-air mixture were clarified.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

On the Air-Entrainment Characteristics of Diesel Sprays and Flames in a Quiescent Atmosphere

1994-10-01
941924
Air-entrainment characteristics of non-evaporating sprays and flames were measured by means of high-speed photography including ordinary shadowgraphy of sprays, back diffused light illumination photography and laser shadow photography of flames. Effects of injection pressure and nozzle orifice diameter on air-entrainment characteristics were investigated parametrically. The amount of air entrained into a flame was calculated by a two-zone thermodynamic model with data obtained from the photographs and the pressure measurement in the combustion chamber. The air-entrainment characteristics of flames were compared with those of the corresponding sprays. It showed that immediately after the start of ignition, the air entrainment into a flame increased more rapidly as compared with the corresponding spray and then, with the development of diffusion combustion, the air entrainment gradually approached that of the spray.
Technical Paper

Quantitative Measurement of 2-D Fuel Vapor Concentration in a Transient Spray via Laser-Induced Fluorescence Technique

1994-10-01
941953
A new method to determine simultaneously the temperature and the fuel vapor concentration inside an evaporating spray was described by using a laser-induced fluorescence technique. A TMPD doped base fuel composed of C12H26: 22%, C13H28: 54% and C14H30: 30% was injected into the combustion chamber of a rapid compression machine which is filled with a high temperature and high pressure nitrogen. The laser sheet was used for incident light, which was reflected by a prism located inside the combustion chamber and propagated through the center of an evaporating spray. The laser induced fluorescence intensity was imaged by a high speed-gated intensifier from a direction perpendicular to the incident light. The results shows that mixtures with high equivalence ratio are observed in the central region, while low equivalence ratio mixtures are observed in the periphery of the spray. It is also observed that the temperature of richest mixture is 50 K as low as the surrounding gas temperature.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

Development of a Rapid Compression-Expansion Machine to Simulate Combustion in Diesel Engines

1988-10-01
881640
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
Technical Paper

High Combustion Temperature for the Reduction of Particulate in Diesel Engines

1988-02-01
880423
Experiments on the effects of temperature T and equivalence ratio ϕ on soot formation at high pressures up to 5 MPa were conducted. The soot formation region is mapped on ϕ-T diagram using the results obtained in the experiments and the published data. NO formation region is also determined by the Zeldovich equations and is plotted on the same diagram. The time histories of ϕ and T of the flame in a DI diesel engine which was obtained by a gas sampling study, are plotted on the ϕ-T diagram to form a trajectory. Discussion of the trajectory in relation to both soot and NO formation region gives suggestion of a possibility of high temperature - rich mixture combustion to reduce particulate formation in diesel engines.
Technical Paper

Effect of High Pressure Injection on Soot Formation Processes in a Rapid Compression Machine to Simulate Diesel Flames

1987-09-01
871610
The characteristics of diesel spray and flame in a quiescent atmosphere were studied as a function of injection pressure ranging from 30 to 110 MPa. Measurements included the spray form and Sauter mean diameter of a non-evaporating spray, the liquid phase penetration of an evaporating spray and the visualization of sooting zone in a flame. Experimental results show that high pressure injection improves the atomization and air entrainment of non-evaporating spray and that the liquid phase penetration of evaporating spray is hardly affected by injection pressure, demonstrating a promotion of evaporation with injection pressure. Visualization of the sooting zone in a flame made it clear that high pressure injection is advantageous in reducing soot formation and shortening the combustion duration.
Technical Paper

Application of Direct System Identification Method for Engine Rigid Body Mount System

1986-02-01
860551
This paper concerns the Direct System Identification Method (hereafter referred to as DSIM) which allows accurate and quick determination of two groups of properties which exercise dominant effects on low frequency vibration of a vehicle body. The first group is the rigid body properties of an engine. The second group is the properties of each engine mount. Under the assumption that the engine/mount system is a rigid body, this paper makes theoretical discussion for using the DSIM to induce the parameters of an engine/mount system, and makes improvements for better correlation with experiments. Also mentioned is a comparison of this study with the experimental results and verification of consistency on those parameters obtained from DSIM to predict the accurate vehicle characteristics, along with the role this method will play in upgrading the technology of prediction analysis.
X